
Version 1.1
11/24/97

Timer Services

Thor Design Panel 3

84K00510-110

Software Requirements and Design Specification

Timer Services Requirements and Design
84K00510-110
Version 1.1 11/24/97

2

1. Timer Services

1.1 Timer Services Introduction

1.1.1 Timer Services Overview

The Timer Services CSC will provide support for application access to the Coordinated Universal Time
(UTC) value. Timer Services will also process commands to set the value of the Countdown Time (CDT)
or Mission Elapsed Time (MET) and to place a hold on the CDT/MET. Timer Services will publish via
Data Distribution the CDT/MET value, the CDT/MET status, the time of the next hold, and the time of the
next resume.

Timer Services will also allow applications to request interrupts after a delay of a specified time, or at a
specified UTC value, CDT value, or MET value. Timer Services will provide a stopwatch function.

1.1.2 Timer Services Operational Description

The Thor delivery will provide an initial release of Timer Services. Timer Services will be provided
through a set of APIs that will allow an application to get the current UTC, Countdown Time
(CDT)/Mission Elapsed Time (MET), request an interrupt after a specified elapsed time and request an
interrupt when UTC, CDT or MET equals a specified value. Timer Services will also provide CDT/MET
capabilities to start, hold (immediately or at a specified time) and set CDT/MET. Timer Services will also
process CDT/MET commands received via Command Management. The commands supported are to start,
hold (immediately or at a specified time) and set CDT/MET. CDT/MET services will be provided by
Application Services APIs and by a Command Support display. Another Command Support display will
support the stopwatch function.

Refer to Timer Services Data Flow Diagram, Section 1.2.4. This diagram shows a local timer server
function on each C&C WS as well as a central timer server function on a CCP. The local and central timer
functions are accessed through the Timer Services APIs and the Timer GUI. Application Services will
interface with Command Management to route CDT/MET commands to the central timer server. This use
of Command Management will provide authentication of CDT/MET commands. The central timer server
maintains the CDT/MET and publishes it as a system Function Designator (FD) to data distribution at a
cyclic rate. Data Distribution then places this FD into the RTCN and DCN change data streams. CDT/MET
are available to applications as an FD via Application Services.

For Thor, Tthhe The Timer Services CDT/MET GUI’s will be independent of the initialized from the
Command Navigation Service, or from Display Services. The Stopwatch GUI will be initialized from
Display Services oonly.

1.2 Timer Services Specifications

1.2.1 Timer Services Ground Rules

• Each C&C WS, the CCP and the DDP processor clocks will be set to UTC via the Network Timing
Protocol (NTP) from the IRIG-B signal it receives.

• Application Services will interface directly with the local timer server for local requests.
• Application Services will interface with Command Management to route Countdown Time (CDT) or

Mission Elapsed Time (MET) commands to the central timer server.
• Command Management will provide authentication of timer commands (i.e. only authorized users will

be allowed to manipulate CDT/MET).
• The Timer Server processes will run as root, with real-time priority.
• A Backup Timing Server will not be part of the Thor delivery.

Software Requirements and Design Specification

Timer Services Requirements and Design
84K00510-110
Version 1.1 11/24/97

3

• The Timer Services GUIs will not be supported in the BASIS environment.
• Timer Services will support a maximum of fifty application interrupt timers per process.

1.2.2 Timer Services Functional Requirements

Basic

1. Timer Services will publish the CDT/MET value as a system FD.
2. Timer Services will publish the CDT/MET status (held or counting) as a system FD.
3. Timer Services will publish the CDT at which the next CDT hold is scheduled as a system FD.
4. Timer Services will publish the UTC at which the CDT will resume counting as a system FD.

 CDT/MET User Interface

5. Timer Services will display the current Coordinated Universal Time (UTC).
6. Timer Services will provide a visual indication of the status of the UTC (synchronized via NTP or not

synchronized).
7. Timer Services will display the current Countdown Time (CDT) or Mission Elapsed Time (MET).
8. Timer Services will provide a visual indication of the status of the Countdown time (held or counting).
9. Timer Services will allow a user to set the Countdown Time (CDT) or Mission Elapsed Time (MET) to

a value.
10. Timer Services will allow a user to immediately start the Countdown Time (CDT) or Mission Elapsed

Time (MET).
11. Timer Services will allow a user to start the Countdown Time (CDT) or Mission Elapsed Time (MET)

at a specified Coordinated Universal Time (UTC).
12. Timer Services will allow a user to immediately place a hold on the Countdown Time (CDT) or

Mission Elapsed Time (MET).
13. Timer Services will allow a user to place a hold on the Countdown Time (CDT) or Mission Elapsed

Time (MET) at a specified CDT or MET .
14. Timer Services will allow a user to cancel pending Countdown Time (CDT) or Mission Elapsed Time

(MET) commands.

CDT/MET and Timer Interrupt APIs

15. Timer Services will provide an API to get the current Coordinated Universal Time (UTC).
16. Timer Services will provide an API to get the current Countdown Time (CDT) or Mission Elapsed

Time (MET).
17. Timer Services will provide an API to generate an application interrupt after a delay of specified time

with a granularity of one millisecond.
18. Timer Services will provide an API to generate an application interrupt when the Coordinated

Universal Time (UTC) equals a specified time with a granularity of one millisecond.
19. Timer Services will provide an API to generate an application interrupt when the Countdown Time

(CDT) or Mission Elapsed Time (MET) equals a specified time with a granularity of one second.
20. Timer Services will support multiple application interrupt timers per process.
21. Timer Services will provide an API to cancel an application timer interrupt request.
22. Timer Services will provide an API to cancel all of an application’s timer interrupt requests.
23. Timer Services will process a command to set the Countdown Time (CDT) or Mission Elapsed Time

(MET) to a value.
24. Timer Services will provide an API process a command to immediately start the Countdown Time

(CDT) or Mission Elapsed Time (MET).
25. Timer Services will provide an API process a command to start the Countdown Time (CDT) or

Mission Elapsed Time (MET) at a specified Coordinated Universal Time (UTC).
26. Timer Services will provide an API process a command to immediately place a hold on the

Countdown Time (CDT) or Mission Elapsed Time (MET).
27. Timer Services will provide an API process a command to place a hold on the Countdown Time

(CDT) or Mission Elapsed Time (MET) at a specified CDT or MET.

Software Requirements and Design Specification

Timer Services Requirements and Design
84K00510-110
Version 1.1 11/24/97

4

28. Timer Services provide an API will process a command to cancel pending Countdown Time (CDT) or
Mission Elapsed Time (MET) commands.

Stopwatch User Interface

29. Timer Services will allow a user to start a Stopwatch Timer.
30. Timer Services will allow a user to stop a Stopwatch Timer.
31. Timer Services will allow a user to clear (reset to zero) a Stopwatch Timer.
32. Timer Services will allow more than one Stopwatch Timer per C&C WS.

Stopwatch API’s

33. Timer Services will provide an API to start a Stopwatch Timer.
34. Timer Services will provide an API to stop a Stopwatch Timer.
35. Timer Services will provide an API to clear (reset to zero) a Stopwatch Timer.
36. Timer Services will provide an API that returns the elapsed time since the Stopwatch Timer was

started.

System Integrity

37. Timer Services will detect the loss of workstation synchronization to UTC.
38. Timer Services will report the loss of workstation synchronization to Subsystem Integrity.

1.2.3 Timer Services Performance Requirements

1. Timer Services must publish the CDT/MET value once per second, with a ten millisecond accuracy
within ten milliseconds of the start of a second, to Application Services on the CCP.

2. Timer Services must provide notification of delay expiration or achievement of a UTC specified value
with a ten millisecond precision.

Software Requirements and Design Specification

Timer Services Requirements and Design
84K00510-110
Version 1.1 11/24/97

5

1.2.4 Timer Services Interfaces Data Flow Diagrams

Timer Services Data Flow

1.2.5 Definitions

1. Granularity - smallest increment which can be specified.
2. Precision - degree of refinement with which a measurement is stated.
3. Accuracy - degree of conformity of a measure to a standard value.

Local Timer
Cmds

Data
Distribution

Local
Timer

Services

User/Sys
Apps

App Svcs

DD

Change Data

Timer
Displays

Cmd Mgmt

Central
Timer

Services

App Svcs

DD

Cmd Mgmt

User/Sys
Apps

CDT/MET
Cmds

CDT/MET
System FD Write

CCWS CCP DDP

CDT/MET
Change

Data

Local
Timer
Cmds

Stopwatch
Cmds

CDT/MET Cmds

Software Requirements and Design Specification

Timer Services Requirements and Design
84K00510-110
Version 1.1 11/24/97

6

1.3 Timer Services Design Specification

1.3.1 Timer Services Detailed Data Flow

Local Timer Server Architecture

The Timer Server will consist of two main functional pieces, the Commands Process, and the Monitor
Timers Process. Timer Services must process commands and update CDT/MET data asynchronously as
they are received. Timer Services must also monitor timers continuously to detect timer expiration, since
timers may be based on CDT. The Commands Process will listen for timer commands and update the
Timer Data. The Monitor Timers Process will detect timer expiration, deliver application interrupts, and
monitor NTP synchronization.

API Flow

1. Applications call the Timer Services API to create a timer.
2. The Timer Services API stores the timer information in the Timer Data area.
3. Timer Services monitors the Timer Data area until the timer expiration is detected.
4. Timer Services sends a signal to the requesting application.

Process Commands Monitor Timers

Application Services

Timer Data

Local Timer Services

API Commands

Applications

Signals

FD Values

Creates Timers
Deletes Timers

Updates CDT/MET

Updates Timers
Sends Interrupts

CDT/MET
change data

Command
Management

CDT/MET
commands

Monitors NTP
Sync

Software Requirements and Design Specification

Timer Services Requirements and Design
84K00510-110
Version 1.1 11/24/97

7

CDT Flow

1. The Local Timer Server will monitor the system FD for CDT that is published by the Central Timer
Server.

2. The CDT value will be stored in the Timer Data area for use in monitoring timers that expire at a
specific CDT.

Process Commands Monitor Timers

Application Services

Timer Data

Central Timer Server

API Commands

Applications

Signals

CDT/MET
change
data

FD Values

Creates Timers
Deletes Timers

CDT/MET Cmds

Command Management

CDT/MET
Commands

Updates Timers
Sends Interrupts

Monitors NTP Sync

Central Timer Server Architecture

API Flow

The API flow will be the same as for the Local Timer Server.

CDT Flow

1. The Central Timer Server will store the CDT/MET data in the Timer Data area. This includes all
values that will be published as system FDs.

2. The Central Timer Server will receive CDT/MET commands from Command Management.
3. The Timer Data area will be updated based on the command input.
4. Any changed FD values will be published via Application Services at the start of each second. The

CDT/MET value will be updated and published at the start of each second.

Software Requirements and Design Specification

Timer Services Requirements and Design
84K00510-110
Version 1.1 11/24/97

8

1.3.2 Timer Services External Interfaces

1.3.2.1 Timer Services Message Formats

Message Number = TBD
Message Group = TBD

CDT set.

No inserts.

Message Number = TBD
Message Group = TBD

CDT held.

No inserts.

Message Number = TBD
Message Group = TBD

CDT counting.

No inserts.

Message Number = TBD
Message Group = TBD

CDT count will begin at I#1.

Insert #1 = string with GMT time formatted as HHMM/SS:mmm

Message Number = TBD
Message Group = TBD

CDT count will be held at I#1.

Insert #1 = string with CDT time formatted as +/- HHMM/SS

Message Number = TBD
Message Group = TBD

CDT pending count at I#1 has been canceled.

Insert #1 = string with GMT time formatted as HHMM/SS:mmm

Message Number = TBD
Message Group = TBD

CDT pending hold at I#1 has been canceled.

Insert #1 = string with CDT time formatted as +/- HHMM/SS

Software Requirements and Design Specification

Timer Services Requirements and Design
84K00510-110
Version 1.1 11/24/97

9

1.3.2.2 Timer Services Display Formats

Countdown Time Display

Shown on the top line is Universal Coordinated Time and Countdown Time. In the outlined box below
these two times is the Countdown Clock (CDC) Status. The first line shows whether the Countdown Time
is set or not set. The second line shows whether the Countdown Clock is counting or holding. The third
line displays a GMT time value when the Countdown Clock will begin counting if a pending count is set.
The fourth line displays a CDT time value when the Countdown Clock will go into a hold, if a pending hold
is set. The bottom two buttons are for issuing immediate commands. The left button places an immediate
hold on the Countdown clock, and the right button immediately starts the Countdown Clock counting. The
CCMS system command that corresponds to each action is printed on the button. For example, a
Countdown Clock hold is “CDTH”, and this is printed on the “Immediate Hold of CDT” button. This
connection with CCMS commands has been maintained throughout the display.

Software Requirements and Design Specification

Timer Services Requirements and Design
84K00510-110
Version 1.1 11/24/97

10

Countdown Time Display - Program Menu

The “Program” menu will have “Exit” and “Hide CDC Status” options. The “Program->Exit” option will
pop up a confirmation dialog and exit the program.

Countdown Time Display - Hiding CDC Status

The “Program->Hide CDC Status” option hides the CDC Status Box and changes the menu option to
“Show CDC Status”. Selecting “Program->Show CDC Status” will make the CDC Status Box reappear.

Software Requirements and Design Specification

Timer Services Requirements and Design
84K00510-110
Version 1.1 11/24/97

11

Countdown Time Display - Schedule CDT Change Menu

The “Schedule CDT Change” menu will have “Set CDT”, “Hold CDT at Specified CDT”, “Start CDT at
GMT”, and “Reset Pending Commands” options.

Countdown Time Display - Set CDT Dialog

The “Schedule CDT Change->Set CDT” menu option will bring up a “Set CDT” dialog box, which will
prompt the user for a CDT value.

Software Requirements and Design Specification

Timer Services Requirements and Design
84K00510-110
Version 1.1 11/24/97

12

Countdown Time Display - Hold CDT at Specified CDT Dialog

The “Schedule CDT Change->Hold CDT at Specified CDT” menu option will bring up a “Hold CDT at
Specified CDT” dialog box, which will prompt the user for a CDT value.

Countdown Time Display - Start CDT at GMT Dialog

The “Schedule CDT Change-> Start CDT at GMT” menu option will bring up a “Start CDT at GMT”
dialog box, which will prompt the user for a GMT value.

Software Requirements and Design Specification

Timer Services Requirements and Design
84K00510-110
Version 1.1 11/24/97

13

Countdown Time Display - Reset Pending Commands Dialog

The “Schedule CDT Change->Reset Pending Commands” menu option will bring up a “Reset Pending
Commands” confirmation dialog box. This command will cancel all pending hold and pending count
commands, and they will be removed from the display.

Software Requirements and Design Specification

Timer Services Requirements and Design
84K00510-110
Version 1.1 11/24/97

14

Countdown Time Display - Countdown Clock Held

When the Countdown Clock is held, the Countdown Time Display will reverse the Countdown Time
background and foreground colors, and will show the Countdown Clock “HOLDING” in the Countdown
Clock status box. Although it is not shown here, the Countdown Time Display will change the Universal
Coordinated Time foreground color to yellow when Timer Services detects the loss of workstation
synchronization to UTC.

Stopwatch Timer Display

The top line of the Stopwatch Timer display shows the stopwatch time minutes, seconds, & milliseconds.
The second line shows the GMT time when the stopwatch timer is started. The third line shows the GMT
time when the stopwatch timer is stopped. The “Start” button will cause a “Start GMT” time to be
displayed, and the stopwatch time will begin counting up. The label on the “Start” button will be changed
to “ Stop”.

Software Requirements and Design Specification

Timer Services Requirements and Design
84K00510-110
Version 1.1 11/24/97

15

Stopwatch Timer Display - Stopwatch Started

The “Stop” button will cause a “Stop GMT” time to be displayed, and the stopwatch time will stop counting
and display the final result. The label on the “Stop” button will be changed back to “Start”. The “Clear”
button will set the stopwatch time, Start GMT time, and Stop GMT time to zero.

1.3.2.3 Timer Services Input Formats

This section is not applicable for Timer Services.

1.3.2.4 Timer Services Printer Formats

This section is not applicable for Timer Services.

1.3.2.5 Interprocess Communications

Timer Services will receive CDT/MET commands from Command Management via IPC messages in
Payload Packet format. Timer Services will deliver response messages via the same mechanism. The
packets containing CDT/MET commands must contain time data for the commands which schedule a
CDT/MET hold or resume to occur at a particular time. For a UTC time, the time data will be provided in
the standard Unix format of seconds since 1/1/70, and microseconds since the start of the second. For a
CDT/MET time, a seconds value is all that is needed. For convenience, the payload packet for all
commands will be identical.

Payload packet expected by timer services is as follows:

CC Packet header 40 bytes

seconds 4 bytes

microseconds 4 bytes

In the CC packet header the route code used will be 98. The following request IDs will be used:

set CDT/MET to a value 1

start CDT/MET 2

Software Requirements and Design Specification

Timer Services Requirements and Design
84K00510-110
Version 1.1 11/24/97

16

hold CDT/MET 3

cancel pending CDT/MET commands 4

1.3.2.6 Timer Services External Interface Calls

Timer Services will provide the following class and methods:

class TS_localTimer

+set () - sets a timer with default values

+set(label, milliseconds, timer type, time string format, notify type) - sets the timer with the
provided parameters

+set(label, struct timeval, timer type, time string format, notify type) - sets the timer with the
provided parameters

+destroy() - removes the timer from the timer table

+destroyAll() - removes all timers created by the process from the timer table

These methods may throw the following exceptions:

sharedMemoryAttach - generated by a failure to attach to the timer table in shared memory

sharedMemoryDetach - generated by a failure detaching from the timer table in shared memory

semaphoreFailure - generated by a failure getting or releasing a semaphore

timerTableFull - generated when a timer attempts to find a slot in the timer table but none are
available

unsetTimer - generated when an operation is attempted on an unset timer

class TS_stopWatch

+clear() - clears the stopwatch

+start() - starts the stop watch

+stop() - stops the stop watch

+getElapsedTime() - gets the current elapsed time

int TS_GetCurrentUTC(struct timeval *T, int *S) - retrieves the current UTC and returns it in a timeval
structure. The user must have allocated the memory for T and S. TS_GetCurrentUTC returns a zero upon
success and T will contain the current UTC and S will contain the status of synchronization of UTC . Upon
failure T will be NULL and S is set to -1.

1.3.2.7 Timer Services Table Formats

This section is not applicable for Timer Services.

Software Requirements and Design Specification

Timer Services Requirements and Design
84K00510-110
Version 1.1 11/24/97

17

1.3.3 Timer Services Test Plan

1. The Timer Services CDT/MET Graphical User Interface will read CDT/MET, CDT/MET Status,
pending hold time, and pending count time FD’s. These values can be set through the same Graphical
User Interface, and when the FD values change, it can be observed on the display.

2. The correct UTC, CDT/MET, and CDT status will be visually verified on the Timer Services
CDT/MET Graphical User Interface. The buttons to set CDT/MET, start CDT/MET, hold CDT/MET,
and cancel pending CDT/MET commands will be tested and the results will be visually verified.

3. The Timer Services CDT/MET Graphical User Interface will call the Timer Services API to get the
current UTC. This can be visually verified on the display.

4. A test driver will be used to request application interrupts on a specified UTC or CDT/MET, set
multiple timers, and cancel interrupt timer requests.

5. The Timer Services Stopwatch User Interface will call the Timer Services API’s to start, stop, set, and
clear a Stopwatch Timer. The buttons on the display will be tested and the elapsed time since the
Stopwatch Timer was started will be displayed on the screen. Two or more Stopwatch User Interfaces
will be brought up on the same CC&WS.

6. The Timer Services Server on the CCP will be shut down. The CDT/MET Graphical User Interface
will visually indicate a loss of workstation synchronization to UTC.

Software Requirements and Design Specification

Timer Services Requirements and Design
84K00510-110
Version 1.1 11/24/97

18

1.4 Timer Services Class Diagrams

TS_vtimer

timerTable : static et_struct_t
shmid : static int
userSem: static int
TSSem: static int
timerObjects : static TS_localTimer

TS_vtimer()
set() : virtual void
destroy() : virtual void
destroyAll() : virtual void
debug() : virtual void

TS_localTimer

owner : int
available : int
objectNumber : int

TS_localTimer()
~TS_localTimer()
set(const char*, const int, const char, const char,
const int) : void
set(const char*, const struct timeval*, const char,
const char, const int) : void
attachToTimerTable(void) : void
isAvailable(const char*) : void
lockTimerTable(void) : void
releaseTimerTable(void) : void
openSemaphore(const int) : void
closeSemaphore(const int) : void

TS_stopWatch

TS_stopWatch()
~TS_stopWatch()
clear() : void
start() : void
stop() : void
getElapsedTimer() : struct timeval *

startTime : struct timeval
stopTime : struct timeval
status : int

